Anti-Malaria Drones: The Fight Against an Ancient Disease

Last updated on

January 3, 2023

Contents

The fight against malaria continues to be one of the most devastating challenges, particularly in the world’s most vulnerable communities. Malaria remains a significant cause of mortality and economic burden in Africa, which bears 96% of malaria deaths worldwide and costs £12 billion per year. With this in mind, it’s easy to see why drones are an increasingly attractive option for delivering countermeasures to help prevent the disease.

Malaria spreads through the bite of infected female Anopheles mosquitoes, and they thrive in stagnant and sunlit water. Rice paddies are breeding grounds for the disease, making it difficult to control over large areas. Using helicopters to detect and spray larval habitats is too expensive and inefficient. By hand, it’s too time-consuming and exposes workers to infected mosquitoes.

Stagnant Water

Drone technology can target the root of the problem and help save lives.

Cheju Rice Irrigation Scheme

In 2019, Anti-Malaria Drones proposed an innovative idea to utilise drones in an irrigated rice agro-ecosystem in Zanzibar, Tanzania. They sprayed multiple rice paddies with an Agras MG-1S drone, modified by the DJI team, to integrate new mechanical pumps. This makes them able to spray a biodegradable agent called Aquatain, which creates a film over the surface of the water which suffocates the larvae and prevents mosquitoes from escaping. Previously used to cover drinking water basins, it is safe for humans and other organisms.

The results saw significant reductions in mosquito larvae and trapped 90% of mosquitoes for over a month. Additionally, drones are cheaper and easier to use than manned aircraft and spray areas 10 to 50 times faster than manual methods.

The Maladrone Project

Researchers from the Liverpool School of Tropical Medicine and the Malawi-Liverpool-Wellcome Trust Clinical Research Programme have deployed drones in Malawi since 2018. The Maladrone team used aerial data and object-based categorisation to demonstrate that orthomosaics can identify mosquito larval sites.

The airborne data was compared to hand larval surveys, allowing the scientists to connect the two. Maladrone used object-based classification to categorise orthomosaic maps and identify mosquito breeding locations. The approach helped researchers determine which reservoirs had mosquito-associated aquatic vegetation to discover infested pools nearby.

Now, drones are sent out monthly to locate breeding sites. To learn more about where mosquitoes lay their eggs, the team collects data throughout the dry season, emphasising dams, reservoirs, and other similar habitats.

Environmental changes make malaria prevention difficult. Mosquito habitats change with the seasons and human activity. The volatility of the disease means that understanding and targeting transmission “hotspots” is crucial.

Dr. Stanton from the project team states that “This surveillance can be of the physical environment – as we’ve done in Maladrone – but I’ve also seen early prototypes of drones being used to capture and analyse adult mosquitoes (Microsoft’s Project Premonition) and take water samples to check for mosquito larvae. Drones could also be used to administer or deliver interventions. I think there’s lots more useful technology to come!”

RELATED POSTS
coptrz-logo
Uncategorized
Rachel Shardlow

Drone Privacy: Considerations When Using Your UAV

Parrot ANAFI USA drone for Military & Defence

Top Drone Technology for Military & Defence 2022

coptrz-logo
Surveying & Construction
Rachel Shardlow

Police Using Drones: The Reality Is Here

dji-mavic-air-1-1-1024×682
Uncategorized
Rachel Shardlow

Drone Market Update: Industry Valued at £42 billion in new PwC report

Climate change
Agriculture & Forestry
Rachel Shardlow

UK space projects using drones to boost global sustainable development

37469307-89e6-40d5-a6cb-48b560e18a58-1-1024×768
Uncategorized
Rachel Shardlow

COPTRZ Drone Detection Team Protects British Grand Prix

shutterstock_489745591-1024×683
Uncategorized
Rachel Shardlow

Drone Detection Systems Protecting Prisons

thermal
Public Safety
Rachel Shardlow

Everything you NEED to know about thermal drones

Drone-regs-ebook-image-271×300
Uncategorized
Rachel Shardlow

10 Reasons Why You Should Take a PfCO Course

Drone Detection For Police Forces
Uncategorized
Rachel Shardlow

Controlling the Skies. Drone Detection for Police Forces

BASKET

No products in the basket.